46e4b6d9-3862-4652-a5a2-4dc8c5f0146b

Sm₂Co₁₇

Sm₂Co₁₇-Samarium Cobalt Magnets

Samarium and cobalt with atomic ratio of 2:17

sm2co17-magnet-smco-custom-magnets

The 2:17 samarium cobalt magnets, also known as Sm₂Co₁₇ magnets, are a high-performance magnetic material made of samarium, cobalt, copper, iron, and zirconium through melting, grinding, pressing, sintering, and aging processes. With a maximum energy product ranging from 17-35 MGOe and a high working temperature between 250℃-600℃, Sm₂Co₁₇ magnets have excellent corrosion resistance and low-temperature coefficient, making them ideal for various applications in aerospace, military, high-temperature motors, automotive sensors, magnetic drives, pumps, and microwave devices. 

Although Sm2Co17 has excellent properties, it is brittle and not easily shaped into complex shapes or thin-walled structures like round disks or rings. Please handle this with care to avoid breakage or injury.

The material for Sm2Co17 magnets is Sm2(CoFeCuZr)17. The grade is coded with YXG. When there is LTC in front of the grade, it means low-temperature coefficient, while HT means high-temperature type. You can quickly tell the difference from the grade table below:

Sintered Sm₂Co₁₇ Magnet Magnetic Properties Standard
GradeRemanence/BrCoercivity Force/HcBIntrinsic Coercivity/HcJ(BH)max Maximun EnergyCurie TemperatureMax. Operating TemperatureTemperature Coefficient of Br α(Br)Temperature Coefficient of Hcj β(Hcj)
TKGsKA/mKOeKA/mKOeKJ/m3MGOe%/℃%/℃
YXG-24H0.95-1.029.5-10.2692-7648.7-9.6≥1990≥25175-19122-24800350-0.035-0.2
YXG-26H1.02-1.0510.2-10.5748-7969.4-10.0≥1990≥25191-20724-26800350-0.035-0.2
YXG-28H1.03-1.0810.3-10.8756-8129.5-10.2≥1990≥25207-22326-28800350-0.035-0.2
YXG-30H1.08-1.1010.8-11.0788-8359.9-10.5≥1990≥25223-23928-30800350-0.035-0.2
YXG-32H1.10-1.1311.0-11.3812-86010.2-10.8≥1990≥25231-25529-32800350-0.035-0.2
YXG-33H1.12-1.1611.2-11.6845-89010.6-11.2≥1990≥25239-26330-33800350-0.035-0.2
YXG-220.93-0.979.3-9.7676-7408.5-9.3≥1433≥18160-18320-23800300-0.035-0.2
YXG-240.95-1.029.5-10.2692-7648.7-9.6≥1433≥18175-19122-24800300-0.035-0.2
YXG-261.02-1.0510.2-10.5748-7969.4-10.0≥1433≥18191-20724-26800300-0.035-0.2
YXG-281.03-1.0810.3-10.8756-8129.5-10.2≥1433≥18207-22326-28800300-0.035-0.2
YXG-301.08-1.1010.8-11.0788-8359.9-10.5≥1433≥18223-23928-30800300-0.035-0.2
YXG-321.10-1.1311.0-11.3812-86010.2-10.8≥1433≥18231-25529-32800300-0.035-0.2
YXG-331.12-1.1611.2-11.6845-89010.6-11.2≥1433≥18239-26330-33800300-0.035-0.2
YXG-351.16-1.211.6-12.0868-90810.9-11.4≥1433≥18255-27832-35800300-0.035-0.25
YXG-26M1.02-1.0510.2-10.5676-7808.5-9.8955-143345278199-21525-27800300-0.035-0.2
YXG-28M1.03-1.0810.3-10.8676-7968.5-10.0955-143345278207-22026-28800300-0.035-0.2
YXG-30M1.08-1.1010.8-11.0676-8358.5-10.5955-143345278220-24028-30800300-0.035-0.2
YXG-32M1.10-1.1311.0-11.3676-8528.5-10.7955-143345278230-25529-32800300-0.035-0.2
YXG-24L0.95-1.029.5-10.2541-7166.8-9.0636-95545150183-19923-25800250-0.035-0.2
YXG-26L1.02-1.0510.2-10.5541-7486.8-9.4636-95545150199-21525-27800250-0.035-0.2
YXG-28L1.03-1.0810.3-10.8541-7646.8-9.6636-95545150207-22026-28800250-0.035-0.2
YXG-30L1.08-1.1510.8-11.5541-7966.8-10.0636-95545150220-24028-30800250-0.035-0.2
YXG-32L1.10-1.1511.0-11.5541-8126.8-10.2636-95545150230-25529-32800250-0.035-0.2
LTC(YXG-18)0.84-0.898.4-8.9629-6687.9-8.4≥1433≥18135-15117-19840300-0.001-0.25
LTC(YXG-20)0.89-0.948.9-9.4660-7088.3-8.9≥1433≥18151-16719-21840300-0.007-0.25
LTC(YXG-22)0.94-0.989.4-9.8692-7408.7-9.3≥1433≥18167-18321-23840300-0.01-0.25
HT400(YXG-26)0.99-1.049.9-10.4740-8129.3-10.2≥1830≥23191-21524-27850400-0.035-0.12
HT450(YXG-24)0.96-0.999.6-9.9724-7729.1-9.7≥1830≥23175-19922-25850450-0.035-0.12
HT500(YXG-22)0.93-0.979.3-9.7708-7568.9-9.5≥1830≥23160-18320-23850500-0.035-0.12
The temperature coefficients of remanence Br and intrinsic coercivity Hcj are measured at 20°C to 150°C, only for reference.
Theoretical calculation formula (T1 = room temperature (usually 20℃), T2=high temperature):
Br@T2=Br@T1-[(T2-T1)*α(Br)*Br@T1]
Hcj@T2=Hcj@T1-[(T2-T1)*β(Hcj)*Hcj@T1]
Taking YXG-28H, Br=1.03T, Hcj=1990KA/m as an example, the theoretical value at 150℃ is calculated as follows:
Br@150℃=1.03-[(150-20)*0.035%*1.03]=0.9831T
Hcj@150℃=1990-[(150-20)*0.2%*1990]=1472KA/m
Physical Properties of Sm₂Co₁₇ Magnets
SmCo₁₇ MagnetUnitResult
Density (D)G/Cm38.4
Curie Temperature (Tc)K1100
Vickers Hardness (Hv)MPa550-600
Compressive Strength (δc)MPa800
Resistivity (ρ)Ω.Cm8~9× 10⁻⁵
Bending Strength (δb)Mpa130-150
Tensile Strength (δt)Mpa35
Coeff. of Thermal Expansion (α)( 10⁻⁶/℃) 8
⊥11
Request A Quote
Attach a Drawing
*Company e-mail address is preferred.